Common fixed point of multifunctions on partial metric spaces
نویسندگان
چکیده
منابع مشابه
Unique common fixed point theorems on partial metric spaces
We prove the existence of the unique common fixed point theorems for self mappings which are weakly compatible satisfying some contractive conditions on partial metric spaces. Furthermore, we also prove the result on the continuity in the set of common fixed points for self mappings on partial metric spaces.
متن کاملCommon fixed point results on vector metric spaces
In this paper we consider the so called a vector metric space, which is a generalization of metric space, where the metric is Riesz space valued. We prove some common fixed point theorems for three mappings in this space. Obtained results extend and generalize well-known comparable results in the literature.
متن کاملCommon Fixed Point Results on Complex-Valued $S$-Metric Spaces
Banach's contraction principle has been improved and extensively studied on several generalized metric spaces. Recently, complex-valued $S$-metric spaces have been introduced and studied for this purpose. In this paper, we investigate some generalized fixed point results on a complete complex valued $S$-metric space. To do this, we prove some common fixed point (resp. fixed point) theorems usin...
متن کاملA common fixed point theorem on ordered metric spaces
A common fixed point result for weakly increasing mappings satisfying generalized contractive type of Zhang in ordered metric spaces are derived.
متن کاملCommon fixed point of multivalued graph contraction in metric spaces
In this paper, we introduce the (G-$psi$) contraction in a metric space by using a graph. Let $F,T$ be two multivalued mappings on $X.$ Among other things, we obtain a common fixed point of the mappings $F,T$ in the metric space $X$ endowed with a graph $G.$
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fixed Point Theory and Applications
سال: 2015
ISSN: 1687-1812
DOI: 10.1186/s13663-015-0348-8